ADVANCED GCE UNIT
 MATHEMATICS (MEI)

Applications of Advanced Mathematics (C4)

Paper A

THURSDAY 14 JUNE 2007
Additional materials:
Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- \quad The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

NOTE

- This paper will be followed by Paper B: Comprehension.

Section A (36 marks)

1 Express $\sin \theta-3 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where R and α are constants to be determined, and $0^{\circ}<\alpha<90^{\circ}$.

Hence solve the equation $\sin \theta-3 \cos \theta=1$ for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

2 Write down normal vectors to the planes $2 x+3 y+4 z=10$ and $x-2 y+z=5$.
Hence show that these planes are perpendicular to each other.

3 Fig. 3 shows the curve $y=\ln x$ and part of the line $y=2$.

Fig. 3
The shaded region is rotated through 360° about the y-axis.
(i) Show that the volume of the solid of revolution formed is given by $\int_{0}^{2} \pi \mathrm{e}^{2 y} \mathrm{~d} y$.
(ii) Evaluate this, leaving your answer in an exact form.

4 A curve is defined by parametric equations

$$
x=\frac{1}{t}-1, y=\frac{2+t}{1+t} .
$$

Show that the cartesian equation of the curve is $y=\frac{3+2 x}{2+x}$.

5 Verify that the point $(-1,6,5)$ lies on both the lines

$$
\mathbf{r}=\left(\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{r}
-1 \\
2 \\
3
\end{array}\right) \quad \text { and } \quad \mathbf{r}=\left(\begin{array}{l}
0 \\
6 \\
3
\end{array}\right)+\mu\left(\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right) .
$$

Find the acute angle between the lines.

6 Two students are trying to evaluate the integral $\int_{1}^{2} \sqrt{1+\mathrm{e}^{-x}} \mathrm{~d} x$.
Sarah uses the trapezium rule with 2 strips, and starts by constructing the following table.

x	1	1.5	2
$\sqrt{1+\mathrm{e}^{-x}}$	1.1696	1.1060	1.0655

(i) Complete the calculation, giving your answer to 3 significant figures.

Anish uses a binomial approximation for $\sqrt{1+\mathrm{e}^{-x}}$ and then integrates this.
(ii) Show that, provided e^{-x} is suitably small, $\left(1+\mathrm{e}^{-x}\right)^{\frac{1}{2}} \approx 1+\frac{1}{2} \mathrm{e}^{-x}-\frac{1}{8} \mathrm{e}^{-2 x}$.
(iii) Use this result to evaluate $\int_{1}^{2} \sqrt{1+\mathrm{e}^{-x}} \mathrm{~d} x$ approximately, giving your answer to 3 significant figures.

Section B (36 marks)

7 Data suggest that the number of cases of infection from a particular disease tends to oscillate between two values over a period of approximately 6 months.
(a) Suppose that the number of cases, P thousand, after time t months is modelled by the equation $P=\frac{2}{2-\sin t}$. Thus, when $t=0, P=1$.
(i) By considering the greatest and least values of $\sin t$, write down the greatest and least values of P predicted by this model.
(ii) Verify that P satisfies the differential equation $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{2} P^{2} \cos t$.
(b) An alternative model is proposed, with differential equation

$$
\begin{equation*}
\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{2}\left(2 P^{2}-P\right) \cos t \tag{*}
\end{equation*}
$$

As before, $P=1$ when $t=0$.
(i) Express $\frac{1}{P(2 P-1)}$ in partial fractions.
(ii) Solve the differential equation (*) to show that

$$
\begin{equation*}
\ln \left(\frac{2 P-1}{P}\right)=\frac{1}{2} \sin t \tag{5}
\end{equation*}
$$

This equation can be rearranged to give $P=\frac{1}{2-\mathrm{e}^{\frac{1}{2} \sin t}}$.
(iii) Find the greatest and least values of P predicted by this model.

Fig. 8
In a theme park ride, a capsule C moves in a vertical plane (see Fig. 8). With respect to the axes shown, the path of C is modelled by the parametric equations

$$
x=10 \cos \theta+5 \cos 2 \theta, \quad y=10 \sin \theta+5 \sin 2 \theta, \quad(0 \leqslant \theta<2 \pi)
$$

where x and y are in metres.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{\cos \theta+\cos 2 \theta}{\sin \theta+\sin 2 \theta}$.

Verify that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $\theta=\frac{1}{3} \pi$. Hence find the exact coordinates of the highest point A on the path of C .
(ii) Express $x^{2}+y^{2}$ in terms of θ. Hence show that

$$
\begin{equation*}
x^{2}+y^{2}=125+100 \cos \theta \tag{4}
\end{equation*}
$$

(iii) Using this result, or otherwise, find the greatest and least distances of C from O .

You are given that, at the point B on the path vertically above O ,

$$
2 \cos ^{2} \theta+2 \cos \theta-1=0
$$

(iv) Using this result, and the result in part (ii), find the distance OB. Give your answer to 3 significant figures.

BLANK PAGE

BLANK PAGE

ADVANCED GCE UNIT
 MATHEMATICS (MEI)

4754(B)/01

Applications of Advanced Mathematics (C4)
Paper B: Comprehension
THURSDAY 14 JUNE 2007

Afternoon
Time: Up to 1 hour

Additional materials:
Rough paper
MEI Examination Formulae and Tables (MF2)

Candidate
Name
Centre
Number \square
Candidate Number
\square

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 18 .
- The insert contains the text for use with the questions.
- You may find it helpful to make notes and do some calculations as you read the passage.
- You are not required to hand in these notes with the question paper.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show

For Examiner's Use	
Qu.	Mark
1	
2	
3	
4	
5	
Total	

This document consists of 5 printed pages, 3 blank pages and an insert.

1 This basic cycloid has parametric equations

$$
x=a \theta-a \sin \theta, \quad y=a-a \cos \theta
$$

Find the coordinates of the points M and N , stating the value of θ at each of them.

Point M \qquad
Point N \qquad

2 A sea wave has parametric equations (in suitable units)

$$
x=7 \theta-0.25 \sin \theta, \quad y=0.25 \cos \theta
$$

Find the wavelength and height of the wave.
\qquad
\qquad
\qquad

3 The graph below shows the profile of a wave.
(i) Assuming that it has parametric equations of the form given on line 68 , find the values of a and b.
(ii) Investigate whether the ratio of the trough length to the crest length is consistent with this shape.

(i)
\qquad
(ii) \qquad
\qquad
\qquad

4 This diagram illustrates two wave shapes U and V. They have the same wavelength and the same height.

One of the curves is a sine wave, the other is a curtate cycloid.
(i) State which is which, justifying your answer.
(i) \qquad
\qquad

The parametric equations for the curves are:

$$
x=a \theta, \quad y=b \cos \theta,
$$

and

$$
x=a \theta-b \sin \theta, \quad y=b \cos \theta .
$$

(ii) Show that the distance marked d on the diagram is equal to b.
(iii) Hence justify the statement in lines 109 to 111: "In such cases, the curtate cycloid and the sine curve with the same wavelength and height are very similar and so the sine curve is also a good model."
(ii) \qquad
\qquad
\qquad
\qquad
(iii) \qquad
\qquad
\qquad

5 The diagram shows a curtate cycloid with scales given. Show that this curve could not be a scale drawing of the shape of a stable sea wave.

\qquad
\qquad
\qquad

BLANK PAGE

BLANK PAGE

BLANK PAGE

